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This paper introduces a new algorithmic scheme for two-stage stochastic mixed-integer programming 

assuming a risk averse decision maker. The focus is the minimization of the conditional value at risk for 

a hard combinatorial optimization problem. Some properties of a mixed-integer non-linear programming 

formulation for conditional value at risk are studied as well as their algorithmic implications. This yields 

to a procedure for obtaining lower and upper bounds on the optimal value of the problem that may 

lead to an optimal solution. The new developments are applied to a fixed-charge transportation problem 

with stochastic demand, and they are computationally tested. The corresponding results are thoroughly 

presented and discussed. 
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. Introduction 

In this work we propose an algorithmic scheme for two-stage

tochastic mixed-integer programming assuming a risk averse de-

ision maker. 

As recently pointed out by Escudero, Garín, and Unzueta (2017) ,

any risk measures can be found in the literature, among which

he most popular ones are scenario immunization, semi-deviation,

in-risk, stochastic dominance, value-at-risk, and the conditional

alue-at-risk (CVaR) (see e.g., Chelst & Canbolat, 2011 , for further

etails on these measures). The two latter measures are possibly

he most widely used in the literature. The risk measure adopted

n this work is the CVaR ( Uryasev & Rockafellar, 2001 ). 

Stochastic Programming has become a very important tool to

edge against uncertainty when compared to approaches derived

rom simplified (deterministic) counterpart models ( Birge & Lou-

eaux 2011, Wallace & Ziemba 2005 ). Due to applications arising in

any relevant fields (e.g., logistics), an increasing amount of work

s being done on two-stage, and multi-stage, stochastic mixed-

nteger linear programming (e.g., Hinojosa, Puerto, & Saldanha-da-

ama, 2014; Nickel, Saldanha-da-Gama, & Ziegler, 2012; Santoso,

hmed, Goetschalckx, & Shapiro, 2005 ). 
∗ Corresponding author. 
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Initially, stochastic programming literature focused predomi-

antly on risk-neutral decision makers, i.e., the future assets are

ccounted for using a mean-type objective function. More recently

his trend has changed and there exists an increasing interest on

odels capturing a risk-averse attitude. To the best of our knowl-

dge, the first work considering a mean-risk objective function

n two-stage stochastic programming is Ahmed (2006) , where the

omplexity of mean-risk stochastic programming considering dif-

erent risk measures was investigated. Fábián (2008) studied two-

tage CVaR minimization problems (as well as CVaR-constrained

roblems) and devised decomposition and solution schemes based

n the linear programming representation of CVaR proposed by

ünzi-Bay and Mayer (2006) . Also in the context of two-stage

tochastic linear programming problems, Miller and Ruszczy ́nski

2011) consider an objective function combining several condi-

ional risk measures. 

For the case of two-stage stochastic mixed-integer linear pro-

ramming problems, Schultz and Tiedemann (2006) presented

n explicit mixed-integer linear programming formulation for the

VaR, when the probability distribution is discrete and finite. For

he same problem Carœ and Schultz (1999) devised a dual decom-

osition approach by relaxing the non-anticipativity constraints. 

The use of risk measures in two-stage stochastic mixed-

nteger linear programming problems has been considered in

everal applications. Noyan (2012) proposed a CVaR mean-risk

odel in the context of disaster relief, which was solved with a
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variation of the L -Shaped method ( Van Slyke & Wets, 1969 ). In

the context of retrofitting infrastructures in a transport network

to protect against disaster events (e.g., earthquake), Liu, Fan, and

Ordóñez (2009) studied a mean-risk two-stage stochastic pro-

gramming model in which risk is handled via a semi-deviation

measure. 

Recently, Homem-de-Mello and Pagnoncelli (2016) discussed

risk measures in multi-stage stochastic programming and potential

applications. Also, Escudero et al. (2017) considered a mean-risk

model using a so-called time stochastic dominance measure and

proposed a scenario cluster Lagrangean decomposition approach.

Finally, we refer to the work by Alonso-Ayuso, Escudero, Guig-

nard, and Weintraub (2016) who presented a mean-risk multistage

stochastic mixed-integer linear programming model for a forestry

management problem. 

In this work we focus on the minimization of the CVaR for a

hard combinatorial optimization problem. We investigate a two-

stage stochastic programming formulation, derived from the direct

definition of CVaR, as an alternative to previous linear representa-

tions for the case when the random vector has a discrete distri-

bution ( Rockafellar & Uryasev, 2002; Schultz & Tiedemann, 2006 ).

In particular, we consider a mixed-integer non-linear programming

formulation and study some of its properties as well as their algo-

rithmic implications. Given the combinatorial nature of the con-

sidered problem, the evaluation of each scenario requires solving a

hard optimization problem, even if the number of scenarios is dis-

crete. However, the properties of the proposed formulation can be

exploited to derive a solution framework, as an alternative option

to schemes based on linear representations. 

The new algorithmic framework has been applied to a risk-

averse stochastic fixed-charge transportation problem, which gen-

eralizes the risk-neutral objective studied in Hinojosa et al. (2014) .

This problem incorporates three main features to a standard trans-

portation problem. First, it is assumed that a strategic decision has

to be made concerning the distribution channels that will be acti-

vated for shipping demand between origin-destination pairs. Sim-

ilarly to Balinski (1961) , activating a distribution channel incurs a

fixed cost. Second, variable costs associated with flows, both for

handling them at the origins and for sending them through the

activated network, are considered as well. This extends the fixed-

charge transportation problem of Balinski (1961) , which does not

consider handling costs at the origins. Third, we assume that de-

mand is stochastic (reflecting volatility of current markets leading

to continuously changing demands), and consider the problem as a

two-stage stochastic problem with recourse. The first stage is given

by the strategic decision concerning the distribution channels and

the recourse action refers to the tactical decision corresponding to

the transportation pattern. 

Examples of potential applications of such a problem are listed

in Hinojosa et al. (2014) and arise in logistics systems in which

previous contracts are needed in order to activate distribution

channels (see, for instance, Xu & Nozick, 2009 ). Other examples

can be found in telecommunications where traffic can be sent

through some channel only if such channel has been previously

made physically available (see Ahuja, Magnanti, & Orlin, 1993 ). Ap-

plications can also be found in production planning when a set of

machines is available during a certain period of time for produc-

ing a set of products and one has to decide which machines will

produce which products and in what quantities (see, for instance,

Grieco, Semeraro, & Tolio, 2001 , and the references therein). Fi-

nally, one potential area where the findings of this work can be

applied concerns fleet management. In fact, most of the distribu-

tion companies must decide in advance about the fleet portfolio

to use (type and number of vehicles) before knowing the demand.

Some work in this direction includes List et al. (2003) and Meng,

Wang, and Wang (2012) . 
It is also possible to find some work in the literature that inves-

igates the use of CVaR in the context of logistics/transportation

ystems. Hemmati, Saboori, and Saboori (2016) highlights the us-

ge of CVaR as a risk measure in a context of energy transporta-

ion. The authors propose a two-stage stochastic mixed-integer lin-

ar programming. Uncertainty is associated with wind resources,

.e., it is associated with supply. The decisions are related with

cheduling storage units. Toumazis and Kwon (2016) consider CVaR

or routing decisions in the context of hazmat materials trans-

ortation. In this case, uncertainty is associated with the occurring

ccidents and their consequences. The concept of worst case CVaR

s introduced as a way to hedge against data inaccuracy. A robust

ptimization modeling framework is adopted. 

In this paper we develop an algorithmic framework for a two-

tage stochastic combinatorial optimization problem, with a finite

et of scenarios, assuming a CVaR objective. The solution algorithm

xploits some properties of a mixed-integer non-linear program-

ing formulation, derived from the direct definition of CVaR. Al-

ernative solution strategies are applied and computationally tested

or a fixed-charge stochastic transportation problem that general-

zes the problem studied in Hinojosa et al. (2014) . The obtained

umerical results are thoroughly discussed and analyzed. These re-

ults show that our proposal outperforms alternative methods for

he largest tested instances. 

The remainder of this paper is organized as follows.

ection 2 recalls the concepts of CVaR on risk-averse decision

aking as well as its computation via the mathematical program-

ing representation developed in Uryasev (20 0 0) , Rockafellar and

ryasev (2002) and Schultz and Tiedemann (2006) . In Section 3 we

ntroduce the mixed-integer non-linear formulation for CVaR that

e use, we study some of its properties, and present the pro-

osed solution framework. Section 4 focuses on its application

o the CVaR stochastic fixed-charge transportation problem. The

umerical results of the computational tests executed with our

olution proposal are presented and analyzed in Section 5 . The

aper ends in Section 6 with some conclusions and guidelines for

uture research. 

. Models for risk-averse decision making 

Consider a two-stage stochastic problem, where stochasticity is

ssociated with a random vector ξ and is expressed via a finite set

f possible scenarios �. Let πω , ω ∈ �, denote the probabilities of

he different scenarios. In two-stage stochastic problems an a priori

first-stage) solution must be defined before the actual realization

f ξ is known. We denote by Y the domain for a priori solutions.

he second-stage recourse action associated with a given first-stage

ecision y ∈ Y represents the set of decisions to be made for each

ossible realization of the uncertain vector ξ. Let R ( y, ξω ) denote

he cost of the recourse action under scenario ω ∈ �. Computing

 ( y, ξω ) requires solving some associated optimization problem on

he set of second-level variables. Moreover, when an a priori so-

ution y ∈ Y is considered, it is not possible to compute the actual

ost of the recourse action. The reason is that when the a priori

olution y ∈ Y is chosen, the specific scenario ω ∈ � that will actu-

lly occur in the realization of ξ is unknown. In this context it is

atural to consider some objective function that incorporates joint

nformation of all possible realizations. One such objective for the

ase of risk-averse decision making is the value-at-risk (VaR) that

e revisit below. 

Let R (y ; ξ) = f (y ) + R (y , ξ) be the cost associated with an a

riori solution y ∈ Y , where f ( y ) represents the here-and-now cost,

nd R ( y, ξ) the value of the recourse function. The latter is a ran-

om variable representing the cost of the optimal second-stage de-

ision for the a priori solution and thus, R (y ; ξ) is also a random

ariable. For a given confidence level α, the VaR is defined as the
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-quantile of the probability distribution of R (y ; ξ) . That is, the

aR of an a priori solution y ∈ Y , denoted by ηα( y ), is the value of

he minimum threshold η for which P 

[
R (y ; ξ) ≤ η

]
is at least α.

ore formally, 

α(y ) = min { η | P [ R (y ; ξ) ≤ η] ≥ α} . 
Using as objective the minimization of the VaR for a given con-

dence level α, that is, min y ∈ Y ηα( y ), the decision maker aims at

inimizing the threshold for the risk level 1 − α. Still, for the solu-

ion y obtained with this objective, the value of R (y ; ξ) may be too

igh, for some of the scenarios whose cost exceeds this minimum

hreshold, even if their joint probability is very low (smaller than

r equal to 1 − α). An alternative that takes into account this con-

ideration is to minimize the expected cost of the scenarios whose

ost exceeds the threshold for a fixed confidence level α. This leads

o the minimization of the α−Conditional Value at Risk ( α-CVaR),

hich is precisely the objective that we consider in this work and

e formally define below. 

The α-CVaR of an a priori solution y ∈ Y, �α( y ), is the expected

alue of the total cost in the (1 − α) × 100% worse scenarios for

he a priori solution y , i.e., it is the expected cost conditional to the

cenarios whose value exceeds ηα( y ). Note that the α-CVaR gener-

lizes the expected cost objective, which is a particular case when

ll the scenarios come into play. Thus, when α is suitably chosen

he α-CVaR of an a priori solution y is just the expected value of

 (y ; ξ) (see Puerto, Rodríguez-Chía, & Tamir, 2017 ). 

For a given solution y ∈ Y , it is difficult to express �α( y ), unless

n analytical representation for ηα( y ) is known, because the lat-

er is involved in the definition of the former. One possibility (see

ockafellar and Uryasev, 2002; Uryasev, 20 0 0 , for further details)

s to consider the following function: 

α(y , η) = η + 

1 

1 − α
E [(R (y ; ξ) − η) | R (y ; ξ) > η] , 

hich, when uncertainty is expressed by a finite set of scenarios

educes to 

α(y , η) = η + 

1 

1 − α

∑ 

ω∈ �
(R (y ; ξω ) − η) + πω , (1)

ith a + = max { 0 , a } . Then, the α-CVaR of y ∈ Y can be computed

s: 

α(y ) = �α(y , η(y )) = min 

η
�α(y , η) . 

Thus, the problem of finding a feasible vector y ∈ Y with the

mallest α-CVaR reduces to: 

VaR α min 

y ∈ Y 
�α(y ) = min 

y ∈ Y 
�α(y , η(y )) = min 

y ∈ Y, η
, �α(y , η) , (2)

hich, taking into account (1) , can be expressed as: 

VaR α minimize η + 

1 

1 − α

∑ 

ω∈ �
πω ψ ω (3) 

subject to y ∈ Y, (4) 

ψ ω ≥ R (y ; ξω ) − η, ω ∈ �, (5) 

ψ ω ≥ 0 , ω ∈ �. (6) 

ote that the meaning of the ψ ω variables in optimal solutions

o the above formulation is precisely ψ ω = 

(
R (y ; ξω ) − η

)+ 
, ω ∈ �.

hen the domain Y can be expressed by means of a set of lin-

ar constraints, the above formulation is a valid mathematical pro-

ramming formulation, linear on the decision variables y . 

It is possible to derive an alternative formulation for CVaR by

bserving that when y ∈ Y is fixed, its α-CVaR, �α( y ), can be ex-

ressed just in terms of y ( Rockafellar & Uryasev, 2002 ). In order
o make the paper self-contained we include the reformulation in

hich we base our algorithmic framework. 

For a given a priori solution y ∈ Y , let us solve the associated

econd-stage problem for each realization, ξω , ω ∈ �, of the uncer-

ain vector ξ, then sort the scenarios by non-increasing values of

 (y ; ξω ) , and finally index them accordingly. To alleviate notation,

f ω r ( y ) is the index of the r -th sorted scenario we will write ξr ( y ) 

nd π r ( y ) instead of ξω r (y ) and πω r (y ) , respectively. Hence, 

 (y ; ξ1(y ) ) ≥ · · · ≥ R (y ; ξ| �| (y ) ) , 

ith probabilities π1(y ) , . . . , π| �| (y ) , respectively. Let 
 ( y ) be the in-

ex such that 

π1(y ) + · · · + π
 (y ) −1 ≤ 1 − α (7) 

π1(y ) + · · · + π
 (y ) > 1 − α. (8) 

Then, according to Rockafellar and Uryasev (2002) , ηα(y ) =
 (y ; ξ
 (y ) ) . 

Let �(y ) = { ω r (y ) ∈ � | 1 ≤ r ≤ 
 (y ) } and let β( y ) be the

eight vector induced by �( y ), whose r -th component is given by

r(y ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

πr(y ) 

1 −α if ω r (y ) ∈ �(y ) \ { ω 
 (y ) } 
1 −

∑ 

ω∈ �(y ) \{ ω 

 (y ) } πω 

1 −α if ω r (y ) = ω 
 (y ) 

0 if ω r (y ) ∈ � \ �(y ) . 

(9) 

Since the non-zero components of β( y ) determine the condi-

ional probabilities for the scenarios in �( y ), the α-CVaR of y can

e expressed as: 

( β(y ) , y ) = f (y ) + 

| �| ∑ 

r=1 

βr(y ) R (y , ξr(y ) ) . (10) 

As pointed out by Fábián (2008) the above β( y ) vectors cor-

espond to the dual optimal solution of the linear programming

roblem emerging from (3)–(6) when y ∈ Y is fixed. Such weights

an also be looked at as the optimal solution of the linear relax-

tion of a knapsack problem. This is an aspect that has been ex-

lored in the context of k -sum optimization by Bertsimas and Sim

20 03, 20 04) ; Puerto et al. (2017) ; and Punen (1992) . 

. Algorithmic framework for minimizing CVaR 

In this section we exploit the results of the above section to

erive our algorithmic framework for the CVaR. Note that the def-

nition of the CVaR associated with a given a priori solution y ∈ Y

roduces the following non-linear formulation for CVaR α: 

VaR α min ϑ( β(y ) , y ) = f (y ) + 

| �| ∑ 

r=1 

βr(y ) R (y , ξr(y ) ) (11) 

s. t. y ∈ Y. (12) 

One difficulty of this formulation, which is independent of the

epresentation of the domain Y , is the non-linearity of the ob-

ective function. This can be partially overcome by using a fixed

eight vector β ∈ R 

| �| . The resulting subproblem is: 

( β) = min f (y ) + 

∑ 

ω∈ �
βω R (y , ξω ) (13) 

s. t. y ∈ Y. (14) 

Of course, there is no guarantee that when β ∈ R 

| �| is fixed,

( β) produces an optimal solution to CVaR α . However, as we will

ee, when β ∈ R 

| �| is suitably chosen, from an optimal solution to

( β) we can derive both a lower and an upper bound on the opti-

al value of CVaR α . In this context, a key issue is how to select ap-

ropriate weight vectors β ∈ R 

| �| that provide useful bounds. For
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this we will choose suitable indices 
 ∈ { 1 , . . . , | �|} and scenario

sets �
 ⊆� with ω 
 ∈ �
 that jointly satisfy ∑ 

ω∈ �
 \{ ω 
 } 
πω ≤ 1 − α (15)

∑ 

ω∈ �
 

πω > 1 − α. (16)

In the following such subsets �
 are referred to as 
 -tails for α.

Any 
 -tail for α naturally induces the following vector β that we

refer to as 
 - weight vector : 

βω = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

πω 

1 −α ω ∈ �
 \ { ω 
 } 
1 −

∑ 

ω∈ �
 \{ ω 
 } πω 

1 −α ω = ω 
 

0 ω ∈ � \ �
 . 

(17)

The particular case �
 = �(y ) is referred to as scenario subset

induced by y ∈ Y , and the 
 -weight vector β = β(y ) is called sce-

nario vector induced by �( y ). 

In principle, any 
 -weight vector induced by a subset of scenar-

ios defining an 
 -tail, or any other vector in the convex hull of such

vectors, can be useful choices. In our framework we will indistinc-

tively use both weight vectors induced by generic 
 -tails as well as

scenario vectors. 

Remark 1. The expected conditional cost of an a priori solution

y relative to any subset of scenarios defining an 
 -tail, �
 � = �( y ),

cannot exceed the α-CVaR of y . This includes the scenario subsets

�( y ′ ) induced by different a priori solutions y ′ ∈ Y , y ′ � = y . This is

due to the sorting used to define the scenario subset �( y ), which

guarantees that this subset is precisely the set of worse scenarios

for the α-quantile for y , and to the fact that β( y ) defines the con-

ditional probabilities for this set of scenarios. 

In what follows we will denote by u the set of the second-stage

variables. We further denote by Q ( y ) the set of feasible solutions u

associated with a given y ∈ Y , and by Q = { (y , u ) | u ∈ Q(y ) , y ∈ Y }
the feasible domain for joint vectors. We assume that the problem

we are dealing with has relatively complete recourse, i.e., Q ( y ) � = ∅ ,
for all y ∈ Y . This is motivated by the application we present in

Section 4 . When β = β(y ) is the scenario vector induced by �( y )

for some y ∈ Y , H( β) can be interpreted as the problem of finding

the best solution q = (y ′ , u ) ∈ Q for the scenario set induced by y .

Since y ′ does not necessarily coincide with y , this perspective is

complementary to that of the computation of the scenario vector

β(y) , which, is to find the set of scenarios that define the actual

CVaR α for a given solution y . 

Next we analyze some of the properties of subproblems H( β) .

First we note that if q = (y , u ) is an optimal solution to H( β) , then

q ∈ Q , since otherwise it would not be optimal. Let us denote by

v 
(
β, q 

)
the objective function value (13) for solution q = (y , u ) ∈ Q

for H( β) . Note that v ( β(y) , q ) = ϑ( β(y ) , y ) . 

Remark 2. 

( i ) The domain of H( β) is exactly the same as that of CVaR α ,

and only their objective functions are different. Thus, any

feasible solution to H( β) produces a valid upper bound

to CVaR α , provided that it is evaluated with respect to

the function ϑ( β( y ), y ). Therefore, for any q = (y , u ) ∈ Q,

v ( β(y ) , q ) is an upper bound on the optimal value to CVaR α .

( ii ) Let q = (y , u ) ∈ Q, with associated scenario vector β( y ).

Then, v ( β′ 
, q ) ≤ v ( β(y) , q ) for any 
 -weight vector β′ � = β( y ).

This property is just a restatement of Remark 1 , taking into

account that if β′ � = β( y ), then the 
 -tail that induces β′ will

also be different from �( y ). 

Below we prove that when β is an 
 -weight vector the optimal

value to H( β) gives a valid lower bound for CVaR α . 
roposition 1. Let v ∗ be the optimal value to CVaR α . Let also q̄ =
( ̄y , ̄u ) ∈ Q be an optimal solution to H( β) for an 
 -weight vector β.

hen, v ( β, ̄q ) ≤ v ∗. 

roof. Let q 

∗ = (y ∗, u 

∗) ∈ Q denote an optimal solution to CVaR α

ith associated scenario vector β
∗ = β(y ∗) . Consider also an opti-

al solution to H( β) , q̄ = ( ̄y , ̄u ) ∈ Q, with value v ( β, ̄q ) . Then 

 ( β, ̄q ) ≤ v ( β, q 

∗) ≤ v ( β∗
, q 

∗) = v ∗, 

here the first inequality follows from the optimality of q̄ for

( β) and the second one from the definition of conditional value

t risk of solution q 

∗ and Remark 2 .( ii ). �

The next result allows to determine if a given solution q̄ =
( ̄y , ̄u ) ∈ Q is optimal for CVaR α . 

roposition 2. Let q̄ = ( ̄y , ̄u ) ∈ Q be an optimal solution to H( ̄β) for

n 
 -weight vector β̄. If the scenario vector induced by �( ̄y ) coincides

ith β̄, i.e. β( ̄y ) = β̄, then q̄ is an optimal solution to CVaR α . 

roof. Let q̄ = ( ̄y , ̄u ) ∈ Q be an optimal solution to H( ̄β) for the 
 -

eight vector β̄. By Proposition 1 , v ( ̄β, ̄q ) ≤ v ∗. On the other hand,

y Remark 2 .( i ), v ∗ ≤ v ( β( ̄y ) , ̄q ) . Finally, since β( ̄y ) = β̄ we have, 

 ( β( ̄y ) , ̄q ) = v ( ̄β, ̄q ) ≤ v ∗ ≤ v ( β( ̄y ) , ̄q ) , 

nd the result follows. �

The above results allow us to propose a solution algorithm that

olves a sequence of subproblems H( βk ) for a series of weight

ectors βk . As we have already pointed out there is no guarantee

hat when β ∈ R 

| �| is fixed, H( β) produces an optimal solution to

VaR α . However, as we have seen above, from an optimal solu-

ion to H( β) we can derive both a lower and an upper bound on

he optimal value of CVaR α . Moreover, Proposition 2 gives a ter-

ination criterion for such an iterative algorithm, certifying opti-

ality. A pseudocode of the above algorithmic scheme is given in

lgorithm 1 . 

lgorithm 1 Algorithmic scheme for CVaR α . 

// Initialization 

y 0 ← Any feasible vector y ; 

β
0 ← β(y 0 ) 

UB ← ∞ ; LB ← 0 

k ← 1 

repeat 

Determine y k solving (13) −(14) 

Update UB and LB 

β
k ← β(y k ) 

k ← k + 1 

until stopping criterion met 

The new algorithmic framework may be particularly suitable for

roblems of combinatorial nature in which an appropriate repre-

entation of the domain Y is not available, so the evaluation of

( βk ) remains a hard optimization problem. This is the approach

hat we propose and we apply for the CVaR Transportation Prob-

em that we study in the following section. 

. The conditional value at risk transportation problem 

In this section we define the Conditional Value at Risk Trans-

ortation Problem (CVaR αTP) which extends the single-commodity

ariant of the expected cost stochastic transportation problem

tudied in Hinojosa et al. (2014) . 

As we show below, by considering the minimization of CVaR

e face a more involved mathematical model than when consider-

ng an expected cost objective. This is explained by the fact that
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he expected value to be computed now involves only a subset

f scenarios that, in turn, depends on the first-stage decision to

ake. Therefore, in addition to the first-stage decisions, already

onsidered by Hinojosa et al. (2014) , we now need to identify the

(1 − α) × 100% worst scenarios which calls for sorting the second-

tage costs. This implies that the methodology and algorithms ap-

lied in that paper are no longer valid for our current problem. 

Next we introduce some notation and describe the feasible do-

ain for the CVaR αTP. Then, we adapt formulations (3)–(6) and

11)–(12) to it. 

Let I and J denote some given index sets for origins and desti-

ations, respectively. In order to satisfy some existing demand lo-

ated at the destinations, some product can be shipped from the

rigins to the destinations. Each origin has a limited capacity, that

epresents the maximum amount of product that it can distribute

o demand points. 

Sending flow from an origin to a destination incurs two types

f costs: a fixed set-up cost for activating the connection (link) and

 variable cost, which depends on the amount of flow that is sent

hrough the link. Activating any link starting at a given origin i ∈ I

ncurs an additional fixed cost due to the set-up of handling oper-

tions at the origin. It is possible that the flows that are routed do

ot meet the demand at some destination point, incurring in such

 case some additional cost (e.g. loss opportunity cost). 

The following deterministic parameters are known: 

c i j Set-up cost for link (i, j) , i ∈ I, j ∈ J. 

d i j Unit cost for the flow through link (i, j) , i ∈ I, j ∈ J. 

k i Maximum amount that can be distributed from (or be 

handled at) origin i ∈ I. 
h i Fixed handling cost at origin i ∈ I. We assume that not all 

these values can be equal to 0. 

p j Unit penalty for unmet demand at destination j ∈ J (e.g., 
loss opportunity cost). 

In the CVaR αTP stochasticity is associated with demand, and

xpressed by a finite set of possible scenarios � with probabili-

ies πω , ω ∈ �. We denote by D j the demand of customer j ∈ J and

y ξ = [ D j ] j∈ J the associated random vector. 

A priori solutions for the CVaR αTP are given by a set of distribu-

ion links that are activated. The cost of an a priori solution is the

verall set-up cost for the selected links. After demand is revealed,

he recourse action is to identify the origins that will actually op-

rate, and to decide the quantity of product to ship from each such

rigin to each demand destination, using the links activated in the

 priori solution. Hence, broadly speaking, feasible solutions to the

VaR αTP consist of ( i ) the links to be activated in the a priori solu-

ion plus, ( ii ) the origins that will operate, and ( iii ) the flows that

ill be sent via the activated links, in the second-stage. 

A priori decisions can be represented by means of the following

et of decision variables: 

 i j = 

{
1 if link (i, j) is activated 

0 otherwise 
i ∈ I, j ∈ J. 

According to the notation used in Section 2 the domain of the

 priori solutions is Y = { y ∈ { 0 , 1 } | I|×| J| } and the cost of a priori

olutions can be expressed in terms of the decision variables as

f (y ) = 

∑ 

i ∈ I 
∑ 

j∈ J c i j y i j . 

Given a first-stage decision y , the problem of finding a mini-

um cost second-stage decision for each possible scenario ω ∈ �

equivalently, for each possible realization of the demand ξ), can

e formulated using the following sets of decision variables: 

z iω = 

{
1 if origin i is used under scenario ω 

0 otherwise 
i ∈ I, ω ∈ �, 

 i jω = Flow to be shipped from i ∈ I to j ∈ J under scenario ω ∈ �, 

s jω = Amount missing at destination j ∈ J under scenario ω ∈ �. 
The motivation for considering the s -variables is the need to

ompute the penalties for unmet demand. Nevertheless, the use of

uch variables can be avoided if shortages are considered as ship-

ents made from a fictitious origin with enough capacity and a

et-up cost equal to 0. In this case, the unit shipment costs from

uch fictitious origin must be defined as the unit penalty cost

t destination. Hence, in the following we consider an extended

et of origins I ∪ {0} where origin 0 is the fictitious one and has

 (scenario-dependent) capacity given by k 0 ω = max { ∑ 

j∈ J D jω −
 

i ∈ I k i ; 0 } , ω ∈ �. The associated set-up and routing costs are de-

ned as h 0 = 0 and d 0 j = p j , j ∈ J , respectively. For ease of presen-

ation, hereafter we use I to denote the extended set of origins,

ncluding the fictitious one. When the new set I contains the ficti-

ious origin, part of the flow that arrives to a demand point may

orrespond to some some missing amount, as just explained. Now,

he correct evaluation of the missing amount at a destination re-

uires to impose that the overall flow arriving at each destination

 ∈ J is at least its demand D j . Then, a minimum cost recourse ac-

ion for the a priory solution y when the realization of the stochas-

ic demand ξ corresponds to scenario ω ∈ � can be formulated as

ollows: 

 (y , ξω ) = minimize 
∑ 

i ∈ I 
h i z iω + 

∑ 

i ∈ I 

∑ 

j∈ J 
d i j x i jω , (18) 

subject to x i jω ≤ D jω y i j , i ∈ I, j ∈ J, (19) 

∑ 

i ∈ I 
x i jω ≥ D jω , j ∈ J, (20) 

∑ 

j∈ J 
x i jω ≤ k i z iω , i ∈ I, (21) 

x i jω ≥ 0 , i ∈ I, j ∈ J, (22) 

z iω ∈ { 0 , 1 } , i ∈ I. (23) 

Constraints (19) ensure that flows are shipped using distribu-

ion links previously activated. Constraints (20) guarantee that a

ufficient amount of flow is shipped to each demand destination.

he identification of the origins that are activated and their capac-

ty limitations are imposed in (21) . We somehow abuse notation

y not making explicit the above-mentioned scenario-dependent

apacity of the fictitious origin in its associated constraint (21) .

he domain of the decision variables is defined in (22) and (23) .

he objective (18) computes the cost of a recourse action for the a

riory solution y under scenario ω ∈ �, as the set-up costs of the

andling operations at the origins that are used plus the overall

outing costs, which include the penalty costs for unmet demand. 

Note that constraints (19) can be reinforced to the set of tighter

onstraints: 

 i jω ≤ D i jω y i j , i ∈ I, j ∈ J, ω ∈ �, (24)

here D i jω = min { k i , D jω } . In the following we assume that this

einforcement is applied together with the following valid inequal-

ties, which impose that the overall capacity of the activated ori-

ins must be enough to supply the total demand in each scenario

 ∈ �: 
 

i ∈ I 
k i z iω ≥

∑ 

j∈ J 
D jω , ω ∈ �. (25)

Using again the notation of Section 3 we assume that the do-

ain of the recourse function for a given a priori solution y is ex-

ressed by 

(y ) = { u = (z , x ) | (18) − (25) are satisfied for the a priori 

solution y } 
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and the domain for feasible joint vectors for the CVaR αTP is Q =
{ q = (y , z , x ) with y ∈ Y, (z , x ) ∈ Q(y ) } . 

The adaptation of the CVaR α formulation (3)–(6) to the

CVaR αTP is: 

CVaR αTP minimize η + 

1 

1 − α

∑ 

ω∈ �
πω ψ ω , (26)

subject to ψ ω ≥
( ∑ 

i ∈ I 

∑ 

j∈ J 
c i j y i j + 

∑ 

i ∈ I 

∑ 

j∈ J 
d i j x i jω + 

∑ 

i ∈ I 
h i z iω 

) 

−η, ω ∈ �,

(27)

ψ ω ≥ 0 , ω ∈ �, (28)

(y , z , x ) ∈ Q . (29)

Since the domain Q is now represented by sets of linear con-

straints, the above formulation is a mixed-integer linear program. 
On the other hand, the adaptation of (11) –(12) to the CVaR αTP

becomes: 

CVaR αTP min 

∑ 

i ∈ I 

∑ 

j∈ J 
c i j y i j + 

| �| ∑ 

r=1 

βr (y ) 

( ∑ 

i ∈ I 

∑ 

j∈ J 
d i j x i jω r + 

∑ 

i ∈ I 
h i z iω r 

) 

(30)

subject to (y , z , x ) ∈ Q . (31)

Due to the non-linearity of the objective function, formulation

(30) –(31) is a mixed-integer non-linear program. Furthermore, we

have no closed expression for the weight vector β( y ), which de-

pends on y . Therefore, one possibility to partially overcome such

difficulty is to focus on the subproblem H( β) that arises when

the weights are fixed to some constant vector β ∈ R 

| �| suitably se-

lected. Now H( β) becomes: 

H( β) = min 

∑ 

i ∈ I 

∑ 

j∈ J 
c i j y i j + 

∑ 

ω∈ �
βω 

( ∑ 

i ∈ I 

∑ 

j∈ J 
d i j x i jω + 

∑ 

i ∈ I 
h i z iω 

) 

(32)

subject to x i jω ≤ D jω y i j , i ∈ I, j ∈ J, ω ∈ �, (33)∑ 

i ∈ I 
x i jω ≥ D jω , j ∈ J, ω ∈ �, (34)

∑ 

j∈ J 
x i jω ≤ k i z iω , i ∈ I, ω ∈ �, (35)

∑ 

i ∈ I 
k i z iω ≥

∑ 

j∈ J 
D jω , ω ∈ �, (36)

y i j ∈ { 0 , 1 } , i ∈ I, j ∈ J, (37)

x i jω ≥ 0 i ∈ I, j ∈ J, ω ∈ �, (38)

z iω ∈ { 0 , 1 } , i ∈ I, ω ∈ �, (39)

In the following, we specify the elements of Algorithm 1 in its

application to the CVaR αTP. The initialization phase starts sorting

the scenarios by decreasing values of their total demand 
j ∈ J D j ω .

Thus, the initial constant vector β0 is computed as the 
 -weight

vector induced by the 
 -tail obtained according to this sorting. In

each iteration k ≥ 1 we solve the problem H( βk−1 ) and we calcu-

late a lower bound as LB k = v ( βk−1 , q 

k ) being q 

k = (y k , z k , x k ) ∈ Q

an optimal solution of H( βk−1 ) . Then, we update the scenario

vector as βk = β(y k ) and we calculate an upper bound as UB k =
v ( βk , q 

k ) . If the updated scenario vector βk coincides with βk ′ for

some k ′ < k − 1 , we define the new weight vector as βk + βk−1 

2 . Fi-

nally, the algorithm terminates either when an optimal solution of

the CVaR αTP is found, which happens when βk = βk−1 , or after

a maximum number of iterations previously specified. In this last

case we obtain a lower and an upper bound of the optimal solu-

tion of the CVaR αTP. 
. Computational tests 

In this section we report on the results of a series of compu-

ational tests performed to evaluate the methodological develop-

ents discussed in the previous sections. 

For the computational study we considered test data introduced

y Hinojosa et al. (2014) namely, the set of instances involving a

ingle commodity, since this is the case in the current work. In

articular, we have | I | ∈ {10, 20, 50}, | J | ∈ {20, 50, 100}, and | �| ∈ {8,

2, 20, 30}. For each combination of | I | and | J | such that | I | ≤ | J |, five

nstances were retrieved from Hinojosa et al. (2014) for each con-

idered value of | �|. The reader is referred to that work for details

oncerning the generation of the instances. Overall, we are consid-

ring 160 instances. 

The computational tests were performed on a PC Intel Core i7-

700 Kelvin CPU @ 4.00 Gigahertz 4.01 GHz with 32 Gigabyte of

AM. The solution algorithms were implemented using Visual Stu-

io C ++ 2017 integrated with ILOG CPLEX Studio 12.7.1 Concert

echnology routines. In particular, all the MIP formulations were

olved using that solver. Apart from the MIP gap, default parame-

ers have been used. 

With the purpose of comparing the CVaR αTP formulation, given

y (26) –(29) , and the proposed algorithmic framework based on

ormulation (30) –(31) , we tested four ways for tackling the specific

roblem we are investigating: 

• GEN: solve formulation (26) –(29) . 
• ALG1: execute one single iteration of Algorithm 1 . 
• GEN-2.5%: solve formulation (26) –(29) , using as a stopping cri-

teria to attain a MIP gap smaller than or equal to 2.5%. 
• ALG1-2.5%: execute Algorithm 1 as follows. A MIP gap of 2.5%

is set for the formulations (32) –(39) solved at the different it-

erations. The execution of Algorithm 1 terminates either when

the number of iterations reaches | �|, or when the deviation gap

between the current lower and upper bounds is smaller than or

equal to 2.5%. 

For all alternatives a time limit of two hours was considered. 

.1. Results 

The results obtained have been split among Tables 1–3 accord-

ng to the number of origins. In these tables the information con-

ained in each row refers to average values for 5 instances; | J | and

 �| indicate the number of customers and the number of scenarios,

espectively, for each group of 5 instances; “Approach” stands for

he alternative approach considered when solving CVaR αTP among

he four detailed above; “CPU time (seconds)” is the (average) time,

n seconds, required to solve the problem to optimality or to meet

he stopping criterion; “# Iter” is the (average) number of itera-

ions required by Algorithm 1 . This information is depicted only

or ALG1-2.5% since this is the only approach for which this infor-

ation makes sense. Finally, three columns present different gaps.

Gap (%) UB-LB” is the (average) percentage gap considering the

est upper and lower bounds obtained in the corresponding ap-

roach. For each instance, it is computed as ( UB − LB ) / UB × 100 .

Gap (%) UB” is the (average) percentage gap computed using the

bjective values of the best feasible solution obtained by the corre-

ponding approach, say v̄ , and the best feasible solution found us-

ng the standard formulation (26) –(29) , say v̄ GEN 

. Hence, for each

nstance, “Gap (%) UB” is computed as [ ̄v − v̄ GEN 

] / ̄v GEN 

× 100 . We

o not present such gap for approach GEN since it is trivially equal

o zero. “Gap (%) LB” is the (average) percentage gap computed us-

ng the objective value of the best feasible solution obtained us-

ng the standard formulation (26) –(29) , v̄ GEN 

, and the best lower

ound obtained in the corresponding approach, say v . For each in-

tance, it is obtained as [ ̄v GEN 

− v ] / ̄v GEN 

× 100 . Again, we do not
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Table 1 

Results for the instances with 10 origins. 

| J | | �| Approach 

CPU time 

(seconds) # Iter 

Gap (%) 

| J | | �| Approach 

CPU time 

(seconds) # Iter 

Gap (%) 

UB-LB UB LB UB-LB UB LB 

20 8 GEN 2200 — 0.04 — — 100 8 GEN 5824 — 0.06 — —

ALG1 3299 — 0.03 0.00 0.03 ALG1 5827 — 0.05 0.00 0.05 

GEN-2.5% < 1 — 1.61 1.19 0.44 GEN-2.5% < 1 — 1.80 1.71 0.12 

ALG1-2.5% < 1 1.00 1.11 0.63 0.48 ALG1-2.5% 1 1.00 0.94 0.82 0.12 

12 GEN 1850 — 0.01 — — 12 GEN 7202 — 0.20 — —

ALG1 898 — 0.29 0.26 0.03 ALG1 7201 — 0.78 0.54 0.25 

GEN-2.5% 1 — 1.40 0.88 0.53 GEN-2.5% 3 — 1.86 1.60 0.30 

ALG1-2.5% 1 1.00 1.43 0.96 0.48 ALG1-2.5% 2 1.20 1.90 1.59 0.34 

20 GEN 6222 — 0.29 — — 20 GEN 7232 — 0.39 — —

ALG1 5999 — 0.74 0.45 0.30 ALG1 7203 — 1.13 0.69 0.45 

GEN-2.5% 6 — 1.68 0.97 0.73 GEN-2.5% 314 — 0.70 0.29 0.41 

ALG1-2.5% 11 2.60 1.57 0.77 0.81 ALG1-2.5% 229 1.80 2.14 1.70 0.48 

30 GEN 7203 — 0.43 — — 30 GEN 7203 — 0.50 — —

ALG1 7203 — 0.68 0.25 0.43 ALG1 7203 — 0.63 0.11 0.52 

GEN-2.5% 14 — 1.86 1.16 0.72 GEN-2.5% 882 — 0.74 0.24 0.51 

ALG1-2.5% 12 1.00 1.58 0.86 0.73 ALG1-2.5% 1143 1.00 1.25 0.73 0.54 

50 8 GEN 7236 — 0.11 — —

ALG1 7097 — 0.11 0.00 0.11 

GEN-2.5% < 1 — 1.88 1.52 0.39 

ALG1-2.5% < 1 1.00 1.88 1.52 0.39 

12 GEN 7203 — 0.42 — —

ALG1 7204 — 0.69 0.24 0.45 

GEN-2.5% 4 — 1.33 0.71 0.64 

ALG1-2.5% 5 1.60 1.35 0.72 0.65 

20 GEN 7219 — 0.60 — —

ALG1 7203 — 1.37 0.78 0.61 

GEN-2.5% 90 — 1.45 0.76 0.71 

ALG1-2.5% 79 1.00 1.79 1.09 0.72 

30 GEN 7201 — 0.73 — —

ALG1 7202 — 0.95 0.19 0.76 

GEN-2.5% 262 — 1.34 0.53 0.82 

ALG1-2.5% 263 1.00 1.35 0.52 0.84 

Table 2 

Results for the instances with 20 origins. 

| J | | �| Approach 

CPU time 

(seconds) # Iter 

Gap (%) 

| J | | �| Approach 

CPU time 

(seconds) # Iter 

Gap (%) 

UB-LB UB LB UB-LB UB LB 

20 8 GEN 5329 — 0.05 — — 100 8 GEN 7230 — 0.19 — —

ALG1 5025 — 0.04 -0.01 0.04 ALG1 7202 — 0.17 -0.02 0.19 

GEN-2.5% < 1 — 2.26 1.93 0.37 GEN-2.5% 1 — 1.82 1.52 0.32 

ALG1-2.5% < 1 1.00 2.21 1.75 0.49 ALG1-2.5% 3 1.00 1.36 1.06 0.32 

12 GEN 5995 — 0.12 — — 12 GEN 7271 — 0.46 — —

ALG1 6135 — 0.98 0.85 0.16 ALG1 7203 — 1.59 1.10 0.51 

GEN-2.5% 3 — 1.01 0.61 0.40 GEN-2.5% 325 — 1.41 0.90 0.53 

ALG1-2.5% 3 1.00 1.42 0.98 0.45 ALG1-2.5% 23 1.00 2.27 1.63 0.68 

20 GEN 7234 — 0.27 — — 20 GEN 7219 — 1.49 — —

ALG1 7203 — 1.02 0.68 0.35 ALG1 7206 — 1.17 -0.34 1.51 

GEN-2.5% 9 — 1.56 0.94 0.63 GEN-2.5% 5150 — 1.86 0.37 1.50 

ALG1-2.5% 14 1.00 1.36 0.85 0.53 ALG1-2.5% 4267 1.00 2.09 0.60 1.51 

30 GEN 7203 — 0.42 — — 30 GEN 7200 — 5.35 — —

ALG1 7203 — 0.57 0.12 0.45 ALG1 7212 — 3.20 −2.24 5.37 

GEN-2.5% 34 — 1.41 0.79 0.63 GEN-2.5% 7200 — 5.35 0.00 5.35 

ALG1-2.5% 55 1.20 1.14 0.60 0.55 ALG1-2.5% 7200 1.00 3.23 −2.21 5.37 

50 8 GEN 7229 — 0.24 — —

ALG1 7203 — 0.24 0.00 0.24 

GEN-2.5% < 1 — 2.28 1.71 0.60 

ALG1-2.5% < 1 1.00 2.15 1.54 0.64 

12 GEN 7202 — 0.48 — —

ALG1 7202 — 1.23 0.76 0.50 

GEN-2.5% 50 — 1.10 0.51 0.60 

ALG1-2.5% 63 3.20 2.30 1.72 0.63 

20 GEN 7200 — 0.81 — —

ALG1 7202 — 1.37 0.55 0.83 

GEN-2.5% 1308 — 1.12 0.28 0.84 

ALG1-2.5% 1239 1.60 1.79 0.94 0.87 

30 GEN 7200 — 0.91 — —

ALG1 7203 — 1.21 0.28 0.93 

GEN-2.5% 2273 — 1.26 0.34 0.92 

ALG1-2.5% 1285 1.20 1.70 0.75 0.96 
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Table 3 

Results for the instances with 50 origins. 

| J | | �| Approach 

CPU time 

(seconds) # Iter 

Gap (%) 

| J | | �| Approach 

CPU time 

(seconds) # Iter 

Gap (%) 

UB-LB UB LB UB-LB UB LB 

50 8 GEN 7201 — 0.14 — — 100 8 GEN 7200 — 0.20 — —

ALG1 7202 — 0.13 −0.01 0.14 ALG1 7207 — 0.20 0.01 0.20 

GEN-2.5% 2 — 1.24 0.94 0.31 GEN-2.5% 5 — 1.15 0.71 0.44 

ALG1-2.5% 3 1.00 1.45 1.15 0.31 ALG1-2.5% 11 1.00 1.34 0.90 0.44 

12 GEN 7200 — 0.29 — — — 12 GEN 7200 — 1.58 — —

ALG1 7204 — 1.49 1.20 0.31 ALG1 7214 — 1.94 0.32 1.62 

GEN-2.5% 6 — 2.12 1.60 0.55 GEN-2.5% 16 — 2.04 0.13 1.92 

ALG1-2.5% 46 1.40 2.04 1.51 0.56 ALG1-2.5% 667 4.80 2.07 0.30 1.77 

20 GEN 7200 — 2.62 — — 20 GEN 7200 — 2.32 — —

ALG1 7208 — 2.28 −0.36 2.63 ALG1 7239 — 1.79 −0.54 2.32 

GEN-2.5% 5764 — 2.67 0.01 2.67 GEN-2.5% 744 — 2.43 0.00 2.43 

ALG1-2.5% 445 1.20 2.34 −0.33 2.66 ALG1-2.5% 1168 1.00 2.19 −0.21 2.39 

30 GEN 7200 — 3.22 — — 30 GEN 7200 — 2.96 — —

ALG1 7219 — 2.61 −0.64 3.23 ALG1 7316 — 2.07 −0.92 2.97 

GEN-2.5% 5913 — 3.22 0.00 3.22 GEN-2.5% 7200 — 2.96 0.00 2.96 

ALG1-2.5% 18094 2.60 2.58 −0.66 3.23 ALG1-2.5% 4040 1.00 2.09 −0.92 2.99 
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(b) All instances with |Ω |= 30.
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(c) Larger instances (|I | = 50,|J |= 100, |Ω |= 30).

Fig. 1. Performance profile with respect to the gap. 
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present this gap for approach GEN since in this case it coincides

with Gap (%) UB-LB. We note that GEN is the “standard” exist-

ing approach. This motivates the use of the corresponding upper

bound for computing two of the three gaps just described. 

Despite the difficulty of drawing overall comparisons when ob-

serving the extensive information provided by Tables 1–3 , there are

a few aspects that can be highlighted. 
First, the time limit of two hours was often reached when us-

ng either GEN or ALG1. Nevertheless, the final gap, “Gap (%) UB-

B”, is in general below 2%. When this is not the case, we often

nd the final gap provided by ALG1 outperforming that of GEN

e.g., | I| = 20 , | J| = 100 , | �| = 30 ). The superiority of ALG1 over

EN seems stronger when we consider the largest instances tested

| I | = 50; | �| = 20 , 30 ). 
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Fig. 2. Performance profile with respect to computing times (all instances). 
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(c) Larger instances (|I |= 50, |J |= 100, |Ω |= 30).

Fig. 3. Performance profile with respect to computing time (MIP gap 2.5%). 
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Second, observing Tables 2 and 3 we see that in several cases

he average “Gap (%) UB” is negative for ALG1 and ALG1-2.5% in-

icating a better upper bound provided by these approaches when

ompared to GEN. Again, this is more evident for larger instances

 Table 3 ). 
Third, considering either GEN-2.5% or ALG1-2.5%, in most of the

ases, a final gap, “Gap (%) UB-LB”, less than or equal to 2.5% was

btained in a fairly small computing time. 

Finally, regarding the quality of the best lower bound (when

ompared to the upper bound provided by the standard approach
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(c) Larger instances (|I | = 50, |J |= 100,|Ω |= 30).

Fig. 4. Performance profile with respect to gap (MIP gap 2.5%). 
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Fig. 5. Performance profile with respect to the number of iterations. 
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GEN), we observe that, in general, ALG1 performs the best. In par-

ticular, one single execution of Algorithm 1 seems to be enough for

obtaining a sharp lower bound. 

Although true, the above observations are not enough for draw-

ing a clear conclusion as for the superiority of our new approach

when compared to the standard one. Below we present results,

which provide further insight into the overall performance of the

compared alternatives. 
.2. Performance profiles 

In this section we analyze the performance profiles of the dif-

erent approaches tested. We recall that a performance profile

raph plots the percentage of instances solved for each value of

he corresponding measure. 

We start with a gap performance profile for GEN and ALG1 with

 time limit of two hours. For this, we consider the gaps between
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Table 4 

Additional results. 

| I | | J | | �| Approach Gap (%) UB-LB # Iter 

50 100 50 GEN 5.18 —

ALG1 3.57 —

GEN-2.5% 5.18 —

ALG1-2.5% 3.56 1,2 

200 50 GEN 80.88 —

ALG1 6.10 —

GEN-2.5% 80.88 —

ALG1-2.5% 5.36 1,4 

100 200 50 GEN 22.23 —

ALG1 3.46 —

6
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he best upper bound provided by each approach and the best up-

er bound among the two approaches. More specifically, let v̄ GEN 

e the objective function value for the best feasible solution found

sing GEN and v̄ ALG1 the corresponding value for ALG1. Define

 

∗ = min { ̄v GEN 

, ̄v ALG1 } . For GEN and ALG1 we compute the gap

ccording to ( ̄v GEN 

− v ∗) / v ∗ × 100 and ( ̄v ALG1 − v ∗) / v ∗ × 100 , re-

pectively. The gap profiles are depicted in Fig. 1 . 

As we can see in Fig. 1 (a), when we consider the whole set of

nstances the performance profile with respect to the gap of the

tandard formulation (26) –(29) is slightly better than the perfor-

ance profile of our alternative solution approach. However for

ll instances with | �| = 30 and for the larger instances —Fig. 1 (b)

nd 1 (c)— the performance profile of our new approach ALG1 is

uperior to that of the standard formulation. In this comparison,

t is worth-noting that we are considering only one iteration of

lgorithm 1 . A similar conclusion was already sketched in the pre-

ious section from the analysis of the extensive results presented

n Tables 1–3 . 

Fig. 2 depicts performance profiles with respect to comput-

ng times for GEN and ALG1. All instances were considered when

rawing these profiles. As we can see, both approaches exhibit a

imilar behavior. In this figure, we also get a clear empirical evi-

ence of the difficulty for solving CVaR αTP. As can be seen, only

0% of the instances were solved to optimality within the time

imit of two hours with any of the two tested methods. 

Due to the difficulty in solving CVaR αTP to proven optimality,

e focused on the behavior of the two variants of the proposed

pproaches, when a 2.5% MIP gap is set as a termination crite-

ion when solving the MIP formulations. The corresponding per-

ormance profiles for the computing times are depicted in Fig. 3 . In

his case, the superiority of the new modeling framework (ALG1-

.5%) as compared to the standard one (GEN-2.5%) becomes visible.

onetheless, it is stronger for the largest instances tested as shown

n Fig. 3 (c). 

The superiority of ALG1-2.5% becomes more noticeable if we

onsider performance profiles with respect to the Gap(%) UB-LB,

s depicted in Fig. 4 . In the particular cases of Fig. 4 (b) and 4 (c)

e see that ALG1-2.5% provides in general smaller gaps. This fact,

ombined with a better performance in terms of computing times,

akes clear the superiority of ALG1-2.5% when compared to the

tandard approach GEN-2.5%. 

Finally, Fig. 5 gives the performance profile of ALG1-2.5% with

espect to the number of iterations. As we can observe, in 90% of

he cases, Algorithm 1 stopped after performing just one iteration

ince that was enough to obtain a solution with a MIP gap smaller

han or equal to 2.5%. 

.3. Further testing—large-scale instances 

In order to give more evidence of the superiority of our pro-

osed solution framework relative to the standard one, we have

ompared both of them on one additional set of 15 large-scale in-

tances, generated as proposed in Hinojosa et al. (2014) . In all cases

e considered | �| = 50 scenarios. For | I| = 50 we took | J| = 100

nd 200; for | I| = 100 we considered | J| = 200 . Five instances have

een generate for each combination of | I |, | J | and | �|. The ob-

ained results are summarized in Table 4 . We do not report com-

uting times, because the two hours time limit was reached in all

ases. Moreover, neither the final gap at termination is reported

or approaches GEN-2.5% and ALG1-2.5% with the largest instances

 | I| = 100 , | J| = 200 ), as it is always greater than 2.5%. For these

ew instances, our new approach clearly outperforms the standard

ne in terms of the average gap attained. In some cases, particu-

arly for all cases with | J| = 200 the difference is very significant. 
. Conclusions 

In this paper, we proposed a new algorithm for obtaining lower

nd upper bounds on the optimal value of a stochastic mixed-

nteger programming problem considering the minimization of the

onditional value at risk. The methodological developments were

pplied to a fixed-charge stochastic transportation problem. The

esults show that the new approach is competitive when compared

o the standard one. This is particularly true for the largest in-

tances tested. 

One drawback of our approach is the need to solve one MIP

roblem in each iteration. Therefore, the competitiveness of this

pproach could possibly be higher if we considered a specially-

ailored procedure for solving those MIPs. This depends of course

n the specific application being considered. Nevertheless, this is

 research direction to explore when making use of our new algo-

ithmic scheme. 

Related with the previous aspect, it is worth investigating the

pplication of our new algorithm to other problems. This is rele-

ant not only because the new approach is a promising alternative

o the existing one but also because that would allow evaluating

he robustness of our approach across different experimental set-

ings. 
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